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ABSTRACT: Electronic coupling is important in determining charge-transfer rates and
dynamics. Coupling strength is sensitive to both intermolecular, e.g, orientation or
distance, and intramolecular degrees of freedom. Hence, it is challenging to build an
accurate machine learning model to predict electronic coupling of molecular pairs,
especially for those derived from the amorphous phase, for which intermolecular
configurations are much more diverse than those derived from crystals. In this work, we
devise a new prediction algorithm that employs two consecutive KRR models. The first
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model predicts molecular orbitals (MOs) from structural variation for each fragment, and
coupling is further predicted by using the overlap integral included in a second model.
With our two-step procedure, we achieved mean absolute errors of 0.27 meV for an ethylene dimer and 1.99 meV for a naphthalene
pair, much improved accuracy amounting to 14-fold and 3-fold error reductions, respectively. In addition, MOs from the first model
can also be the starting point to obtain other quantum chemical properties from atomistic structures. This approach is also

compatible with a MO predictor with sufficient accuracy.

B INTRODUCTION

Organic semiconductors have attracted considerable attention
owing to their potential applications in electronics, light-
emitting diodes, and photovoltaics. This interest reflects
several advantages, such as low mass, mechanical flexibility,
and tunable functionality. Yet, compared to inorganic semi-
conductors, i.e., Si-based materials, their relatively low carrier
mobility, which results in charge recombination, limits their
applications." Moreover, efficiency for electro-optical con-
version is also determined by factors that are difficult to
control, such as microscopic packing structure' and thermal
fluctuations.” To advance the development of materials,
computational simulation and modeling can offer valuable
insights into working mechanisms and can reveal design
principles.” ™

The difficulty in investigating organic semiconductors
theoretically is our incomplete understanding of their charge
carrier dynamics. Conventionally, charge transfer is modeled
either by Marcus theory,” in which electronic coupling
between molecules is small enough to be treated as a
perturbation of nuclear dynamics, or band theory,® in which
thermal fluctuations are relatively small, treated as perturba-
tions of electronic degrees of freedom. For organic semi-
conductors, intermolecular electronic couplings can lead to
delocalized polarons, but electron—phonon couplings, exhibit-
ing similar orders of magnitude, can cause them to deteriorate.
A direct dynamic simulation of both electron and nuclear
degrees of freedom is needed to properly describe such
nonadiabatic dynamics. Several approaches have been
developed based on mean-field Ehrenfest’ or fewest switch
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surface hopping molecular dynamics (MD)'® for charge
transfer in organic semiconductors." ~"”

Establishing an effective electronic Hamiltonian in the site
basis representation is the fundamental requirement for
simulating dynamics with electron—phonon couplings. In
principle, one can build a high-quality Hamiltonian using an
all-first-principles calculation, but the computational cost can
be prohibitive. This issue can be solved with a machine
learning (ML) technique. With the help of ML, a quantum
chemical property can be obtained with a small fraction of the
computational costs.'* ** For instance, ML models have been
widely applied to predict potential energy surfaces,'”*”™* as
well as electronic couplings.** >

Using machine learning algorithms to predict electronic
coupling of electron transfer has been reported.** ™" Many
studies have focused on structures derived from crystals under
thermal fluctuation, ™*7*%3%558 yhile far fewer investigations
have examined amorphous materials.”>>>°> With sampling
from crystals, errors of trained ML models can be less than 1
meV due to the small range of structural variation. Resulting
models, however, cannot be generalized for amorphous phases
on which most organic electronic devices are based. ML built
for amorphous states is applicable to a much broader class of
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problems since there is far greater structural diversity, but the
magnitude of errors reported, 1—20 meV, needs further
reduction since effective ET coupling is typically in the range
of 10" to 10> meV.

One of the practical challenges in establishing the relation-
ship between an atomistic structure and its corresponding
electronic coupling** ™7 is that electronic coupling is not a
slowly varying function of the atomistic structure. For example,
with a large amount of data points (120,000), we previously
reported a testing mean absolute error (MAE) of 6.5 meV for
coupling of a naphthalene pair using artificial neural networks
(ANNs).*” One of the difficulties is the sensitivity of electronic
coupling to the spatial orientation of a dimer. As one of the
fragments in a naphthalene pair rotates, electronic coupling
oscillates and crosses zero several times, reflecting the
oscillatory nature of active molecular orbitals (MO) in the
coupling. Therefore, electronic coupling is a much more
sensitive quantity than potential energy surfaces and energy
gradients.

Such sensitivity can be captured by the overlap integral of
MOs, as a strong correlation between MO overlaps and
coupling has been reported in the literature,”’™** implying a
chance to predict electronic couplings with overlap integral
values. In order to obtain this overlap integral, active MOs
involved in electron transfer are needed. Building a transferable
method to predict MOs of a general set of molecules has been
an active research area. The sophisticated deep learning
framework, SchNOrb, offers a general prediction of MOs for a
wide range of molecules.”>®> Nonetheless, for the charge-
transfer coupling study, the precision of the overlap integral
and subsequently the requirement for MO coeflicients need to
be very precisely predicted. Thus, it would be ideal to divide
the task into two steps, with the first step being prediction of
the MO and the second being the final coupling with the MO
or the overlap values provided. In this way, the first step can be
replaced by any MO-predicting model when the transferable
models of MO prediction are mature enough.

In the present work, we exploit the observed correlation
between MO overlap and electronic coupling and propose a
new algorithm to predict electronic couplings. As depicted in
Figure 1, we propose a scheme with two consecutive ML
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Figure 1. Schematic representation of machine learning workflows for
electronic coupling prediction.

models. The first predicts MOs for each of the two molecules
in the structure. The second predicts the electronic coupling of
the molecular pair using a new feature spanned by the overlap
integral of MOs of individual molecules in the pair, as obtained
from ML1, together with the Coulomb matrix (CM) of the
pair. We show that accuracy can achieve an MAE of 0.27 meV
for ethylene dimers and 1.99 meV for naphthalene dimers, a
6—16 fold reduction compared to our previous results.”’ For
both test cases, our model exhibits good distance dependence
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and phase prediction. The present study provides a way to use
ML to predict quantum chemical properties.

B METHODOLOGY

Our proposed scheme to predict electronic coupling is
depicted in Figure 1. This new two-step algorithm is
implemented with two ML models. The first model (ML1
hereafter) predicts the MOs of individual fragments from their
structures. The overlap between the predicted MOs is then
calculated. In the second stage, the calculated overlap along
with structural information is used to form the feature input
and is then passed to the second model (ML2 hereafter) to
predict electronic coupling.

Construction of ML1: MO Prediction. We first
developed an ML model to predict the MO coefficients.
Here, we propose that instead of learning MOs directly, we
train a model to predict the variation of MO coeflicients with
the corresponding structural variation.

MOs under Structural Variation. Pople et al. showed
that the gradient of MO coeflicients with respect to the nuclear
coordinate®® can be calculated by
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where 4(v) denotes the atomic orbitals, S, is an element of an
overlap matrix, R; denotes the nuclear coordinate of the Ith
atom, and C,, represents the coefficients of MO a on the uth
atomic orbital. This expression implies that the gradient of MO
coefficients is a functional of structure variation AG and the
gradient of the overlap matrix, which is also dependent on AG,
which can be formally denoted as AC[AG, AS[AG]].
Naturally, the input feature used to predict the variation of
MO coefficients is formed by the difference between the
Cartesian coordinates of composite atoms
AG = {AR,, AR,, ..., ARy }
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where I denotes the Ith atom and “ref” represents the reference
molecule, which is a fully optimized structure in the ground
state in the present work. All molecules used for ML1 training
are rotated and translated into a standard orientation, and
further details are included in Section 1.1 of the Supporting
Information.

The target, variation of MO coeflicients, as our reference
label, can be calculated simply by

Ay = Y = Wit
=2G"% -2
u u

=2 Q" =)y,
u 4)

where yyp and ¢ represent the MOs of molecules extracted
from the MD trajectory and the reference molecule,
respectively, with C™® and C:ff being their MO coefficients,
and y, denotes an atomic orbital.

Training ML1 for MO. The workflow for training a KRR
model to predict MO coefficients is schematically shown in
Figure 2. After extracting the structures of molecules from an
MD trajectory, we first translate and rotate them into standard
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Figure 2. Workflow for building ML1, a KRR model that predicts the MO from the structural variation, and ML2, which predicts electronic
coupling from the CM and the overlap. In training the ML2 stage, overlap s was obtained from quantum chemical calculations.

nuclear coordinates. Subsequently, MOs are calculated using
DFT calculations. Phases of wave functions are arbitrarily
determined by the linear algebra subroutines in the quantum
chemical program. Hence, phases of MOs should be aligned, as
illustrated in Figure S1, before computing the variation of MO
coeflicients.

For building ML1, the feature vector calculated with eq 2 and
the label vector computed with eq 4 are employed to train a
Gaussian KRR model to predict variation of the MO
coefficients. Full MOs are then obtained by adding the MO
of the reference molecule back to the predicted variation. Since
we seek to describe hole transfer, we focus on highest occupied
molecular orbital (HOMOs) in the present work. Our
approach can be generalized to the lowest unoccupied
molecular orbitals for electron-transfer coupling, or to other
MOs.

ML2: Electronic Coupling Prediction. We developed a
second-stage ML model to predict electronic coupling. The
workflow is also illustrated in Figure 2. Geometric features are
excellent descriptors to predict electronic coupling.**—>>*
Moreover, previous studies have also demonstrated that
overlap of MOs involved in an electron transfer is highly
correlated with electronic coupling.”*®* The same trend
applies to this work (Figure S2). The overlap s and the
coupling are linearly dependent even though the range of
overlap is rather small. Nevertheless, VMO ctarts to deviate
from the linear dependence in the range of large overlap (Isl >
0.03), indicating a nonlinear contribution in the dependence of
s, as implied in eq 5. To capture the linear dependence and
deviation simultaneously, we use both overlap s and structural
information to form the feature vector of ML2.

The sign of electronic coupling may not be relevant to
describing a charge-transfer process between two fragments.
However, it is crucial to be able to track the sign with the
reference geometry because randomly determined phases make
the data unlearnable.”” Moreover, to describe charge transfer
with many molecules, it is important to maintain the phase of
the basis at each site in determining Hamiltonian matrix
elements. We employed a phase correction scheme to relate
the structure and the phase.”"*” Subsequently, feature vectors
are spanned by the CM and the dimer overlap. Once feature
vectors are constructed, they and the reference label are passed
to the machine for training the model.

Prediction Algorithm. By combining ML1 and ML2, we
built a scheme that predicts the electronic coupling of a
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molecular dimer. The workflow outlined in Figure 3 is also

listed as follows:

(3)

N

(1)

Ayt Ayt
4 +Ret +Ref
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|
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Figure 3. Workflow was used to predict electronic coupling from a
molecular pair.

(1) Rotate and translate both fragments of a dimer into the
standard orientation independently.

(2) Compute the structure deviation of two fragments (AG,
and AG,) with respect to the reference molecule.

(3) Predict variations of the MO coefficients of fragments
(A and Ayd™) with the ML1 model.

(4) Obtain full HOMOs of both fragments by adding back
the HOMO of the reference molecule.

(5) Rotate and translate fragments and ML HOMOs back to
their original positions.

(6) Calculate the ML overlap (sM") of the two HOMOs and
then form the input feature together with the CM of the
dimer.
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Figure 4. Testing MAEs in normalization and similarity of the ML HOMOs of (A) ethylenes and (B) naphthalenes with different numbers of

training samples.

(7) Pass the input feature to the ML2 model for electronic
coupling prediction.

Other Details. This section includes conditions and
methods or further details to obtain the data points.

Sampling from MD Simulation. The first step in
implementing machine learning is to acquire a large data set.
For the sake of convenience, we reused the database that was
generated for our previous investigations.”””> For both
ethylene and naphthalene, 20,000 molecules were used for
MD simulations in their liquid phase (130 and 400 K,
respectively). The pressure for both systems was 1 bar, with
optimized potentials for liquid simulation force fields
employed.*®

Since ML1 needs only monomolecular data, 20,000
molecules were extracted from the MD snapshot for training
and testing. To build the ethylene data sets for ML2, structures
of pairs of molecules were extracted from the MD trajectory.
Center-of-mass (COM) distances of two molecules ranging
from 3—4, 4-5, 5—6, 6—7, and 7—-8 A were collected
separately, with each set containing 20,000 pairs of molecules
for training and testing of ML2. In developing both ML1 and
ML2, 90% of the data points were used for training and 10%
were reserved for testing. An additional 1000 dimers were
extracted from each of the five COM separation ranges for
testing the final combined model. Therefore, 20,000 and
100,000 data points were used for training and testing ML1
and ML2, respectively, and for testing the overall two-step
performance, 5000 data points were used. The process of
building the data set for naphthalene was the same except that
the range of the COM distances of pairs collected from the
MD trajectory was 3—10 A, with seven sets in each A
increment. Hence, numbers of data points for training (90%)
and testing (10%) ML1, ML2, and the overall prediction
algorithm are 20,000, 140,000, and 7000, respectively.

Quantum Chemical Calculations. As mentioned above,
ML1 and ML2 are built to predict MO and electronic
coupling, respectively. To obtain ground truths for the learning
process, DFT calculations are performed with the DZ* basis
set and the long-range corrected functional LC-BLYP.*””°
Here, we set the range—separation parameter y to 0.41 bohr™
for ethylene and 0.26™" for naphthalene in order to properly
describe the hole transfer.”'

Electronic couplings of pairs are calculated with the frontier
molecular orbital (FMO) approach, defined as

VMO _ foa =5/ 2(pp = fin)

1 -

(s)
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where fD A= <W£MO!]?|WF?\/IO> with f being the Kohn—Sham
operator of the donor—acceptor system. wh\) denotes frontier
Kohn—Sham orbitals for the donor (acceptor), and throughout
the present work, since we are building models for hole
transfer, they are the HOMOs. s is the overlap between MOs
of the donor and the acceptor, calculated as

5= <‘/’1:1)Mo|‘/’$\40>

Z Z C;?FMoCzﬁcmo%U(,)

HED vEA

(CFDMO)TSDACQMO (6)

where Sp, is the overlap matrix in the atomic basis of the
donor and acceptor. It is the off-diagonal block of the atomic
orbital overlap matrix. CR{f, is the coefficient of FMO for the
donor/acceptor as a vector, and C” is its transpose. In the
present work, we calculate the electronic coupling for the hole-
transfer case. Hence, the HOMOs of the donor and acceptor
are considered. We first calculate the HOMOs of individual
fragments in their neutral singlet state, and diagonal and off-
diagonal Kohn—Sham matrix elements, fpp(aa) and fp,, and
the overlap s are computed. The final coupling value is then
obtained from eq 5. All QC calculations are performed with a
development version of Q-Chem.””

B RESULTS AND DISCUSSION

In this section, we first assess the performance of the MLI
model for HOMO prediction, which is followed by the
prediction accuracy of ML2, including the effect of CM
representation and learning curves on the size of training
samples. Finally, we report the performance of the full two-step
algorithm, including learning curves and test results on
separation distance dependence as well as phase prediction.

In this section, we first assess the performance of the ML1
model for HOMO prediction, followed by the prediction
accuracy of ML2, including the effect of CM representation
and learning curves with the size of training samples. We also
report the performance of the full two-step algorithm,
including learning curves and test results on separation
distance dependence as well as phase prediction, at the end
of this section.

ML1 Evaluation: Quality of ML MOs. The performance
of the first ML model is assessed by the quality of the ML
MOs. In the present work, the quality of an ML HOMO is
quantified by normalization of predicted HOMOs and
similarity to that of QC HOMOs. The normalization error
of a molecule is calculated by

https://doi.org/10.1021/acs.jpca.3c04524
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than 6 X 107°, a rather small number that should be good
enough to predict MOs.

The corresponding performance for naphthalene is lower.
With 10,000 training samples, the MAEs of N and # converge
to 9.0 X 10~ and 44 X 1073 respectively. The better
performance for ethylene is likely due to the structural
simplicity of ethylene compared to naphthalene. The addi-
tional intramolecular degrees of freedom of naphthalene make
the fitting problem harder to solve. In addition, in preparation
of data, a higher temperature in sampling was used for
naphthalene for a liquid state in MD; thus, more variable
structures are obtained.

While both errors are less than 1%, we note that the
normalization error can be simply corrected by rescaling after
MLI1. However, deviation from the ground-truth MO, as
indicated by %, is harder to fix. In the present work, we chose
not to rescale the MO obtained by ML1, and the predictive
power is demonstrated in section “Assessment of the Two-Step
Scheme”. We note that our current approach works well for
learning just one MO under structural variation. A similar
strategy can be applied to the full set of MOs, or the full wave
function prediction, but additional consideration would be
required, such as orthogonality between any two MOs.

ML2 Evaluation. Effect of CM Representation. Next, we
examine the performance of ML2. Details of the training
strategy follow our previous work.”' In our earlier work, the
Gaussian KRR model for ethylene dimers reached an MAE of
3.5 meV, while for naphthalene pairs, it was ~11 meV.>' To
improve predictive power, the overlap integral value of
HOMOs is included in the feature vector. Here, we take a
look at the effect of the CM representation.

Direct comparisons of coupling values from QC calculations
V& to those from ML results V™" are illustrated in Figure S.
Models trained with either CMg; or CM;,., are compared.
Results for ethylene and naphthalene are shown in the top and
bottom panels of Figure S, respectively. For the sake of
simplicity, only results for the testing set are shown here. The
error in the training set is included in the Supporting
Information accompanying this work. Generally speaking,
ML models that were trained with CMg,; (Figure SA,C) yield
slightly less accurate results, compared to those with CM.,
(Figure SB,D). Nonetheless, the KRR model with two types of
CM representations reproduces the testing data well. For
ethylene, MAEs for CMg,; and CM,,,, are 0.66 and 0.38 meV,
respectively. Errors for testing samples are roughly 3 times
larger than those for the training data set (Figure S6 in the
Supporting Information). All determinations of coefficients
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Figure S. Comparison of electronic couplings obtained by quantum
chemical calculations (V) and by the ML2 (VM) for ethylene pairs
(panels A and B) and naphthalene dimers (panels C and D) trained
with CMgy; (A,C) or CMj,.; (B,D) belonging to the testing sets. All
models were trained with Nt = 20,000 and tested with another 2000
samples. Color indicates the density of the data points. Both MAE and
RMSE are expressed in meV.

(R?) are reported as 1.000, which means that the predictive
ability is powerful enough.

Electronic coupling between two naphthalene molecules is
harder to predict precisely, as can be seen in Figure SC,D. The
MAE with CMyy is 2.39 meV, whereas using CM.,, the MAE
is 2.15 meV, much higher than that for ethylene. In order to
maintain a similar level of disorder for a liquid phase,
naphthalenes were extracted from MD simulations at a higher
temperature, which leads to greater structural diversity.
Moreover, as a larger molecule, naphthalene has many more
degrees of freedom, including several low-frequency ring
wiggling or distortion modes that are easily populated during
sampling. The HOMO of naphthalene has two nodal planes,
leading to a more complicated orientation dependence. Both
factors contribute to the observed difficulties in constructing
an accurate ML model.”"

With inclusion of the overlap, the improvement of
prediction accuracy can be seen clearly in the scatter plots
(Figure 5). The MAE for ethylene is now reduced from 4.25°"
to 0.38 meV in the case of CM,, representation. For
naphthalene, the MAE decreases to 2.15 meV, which is
approximately one-fifth of previous errors.”’

Learning Curves. Machine learning is a data-driven
approach. More training data lead to a more accurate model.
On the other hand, computational cost and time grow
tremendously. Therefore, it is important to find a balance
between accuracy and cost. In order to achieve this goal, we
trained the Gaussian KRR model with different numbers of
training samples for both molecules(Figure 6). For each size,
the model was trained with randomly selected N samples and
tested with another N;/10 samples. After this process was
repeated 20 times, the mean of MAEs for the coupling value is
shown in the plots, and their standard deviations (SDs) of the
20 tests are shown as error bars.

All learning curves for both ethylene and naphthalene
gradually decreased with an increasing number of training
samples. For ethylene dimers, the testing MAE in couplings of
CMg, and CM,,,, start from 1.5 + 0.17 and 1.03 + 0.08 meV
and then slowly approach 0.47 + 0.01 and 0.27 + 0.01 meV.
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trained with 15,000 samples.

The predictive power of the KRR model with CMj,., reaches
convergence at Ny = 40,000. In addition, including CMy; in
the feature results in a slower learning rate than those of
CM,er- The dimension of CMyy is much larger than CM
The larger feature vector dimension results in larger input space

inter*

and greater spareness in the data. A larger training data set is
needed to reach the same accuracy level. Furthermore, the
SDs, variations of performance in different samplings, of CMg
and CM,, are 0.17 and 0.08 meV with 2000 training samples
and then drop to ~0.01 meV in larger data sets.

MAE:s for coupling values from ML2 of naphthalene dimers
(Figure 6B) also decreased with increasing numbers of training
samples. The testing MAEs of CMg, and CM,., start from
3.20 #+ 0.18 and 2.74 + 0.25 meV and then slowly approach
2.26 + 0.0S and 1.82 + 0.04 meV. Unlike the behavior of
learning curves for ethylene dimers, the prediction accuracy for
the CM,, of naphthalene dimers still can be clearly improved
even with 40,000 samples. We stop here because memory
usage and computational time required exceeded our usual
computational settings.

Error bars in Figure 6 indicate variation in the performance
of different models with different sampled training data. As in
the case of ethylene, error bars become smaller with increasing
numbers of training samples, as they converge to approx-
imately 0.035 meV with 30,000 samples. Data for naphthalene
dimers have larger error bars, indicating that the variation in
the training sample data affects model performance, implying
that increasing the training data improves the trained model.
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This is consistent with the slopes of the learning curves at the
end of our tests.

To further improve the accuracy for naphthalene dimers or
larger molecules, an efficient training strategy is required. For
instance, an incremental learning or online learning technique
allows one to retrain a trained model with incoming data with
less memory.”” In the future, we hope to develop and integrate
such techniques into our algorithms for efficient learning.

Assessment of the Two-Step Scheme. Overall
Performance. We further combined ML1 and ML2 for the
two-step scheme. In this algorithm, the overlap s in the input
feature of ML2 is computed with the HOMOs given by ML1.
We first assess the overall performance of the two-step scheme
with learning curves in which one of the two steps is trained
with different sample sizes. The test for sample size in ML1
models was combined with an ML2 trained with 40,000
samples. As shown in Figure 7A, the MAE of ethylene dimers
had already reached the accuracy limit with 1000 training
samples. On the other hand, as shown in Figure 7C, the
predictive power of our algorithm for naphthalene pairs is
improved by increasing the number of training samples. The
MAE gradually decreases with the number of training samples
and reaches convergence at 15,000.

The effect of training sample size for ML2 was also tested,
together with the fixed ML1 trained with 15,000 samples. As
shown in Figure 7B,D, the number of training sets for the
models has a significant effect on the predictive power. The
MAE gradually approaches 0.26 meV for ethylene dimers. As

https://doi.org/10.1021/acs.jpca.3c04524
J. Phys. Chem. A 2024, 128, 271-280


https://pubs.acs.org/doi/10.1021/acs.jpca.3c04524?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04524?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04524?fig=fig6&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.3c04524/suppl_file/jp3c04524_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04524?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04524?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04524?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04524?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04524?fig=fig7&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c04524?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry A

pubs.acs.org/JPCA

for naphthalene pairs, the MAE also slowly decreases with the
number of training samples and reaches 1.99 meV, which is
roughly equivalent to the testing MAE of ML2 by using s%. As
shown in Table 1, using one more ML model does not

Table 1. Testing Performance (in MAE) of ML2, ML1 +
ML2, and CM with the 40,000 Training Samples

molecules ML2 MLI + ML2 CM, e
ethylene 0.27° 0.27 3.5
naphthalene 1.82 1.99 ~13

“From ref 51, where the feature is CM,,, without overlap. “In the
units of meV.

introduce additional errors into this algorithm. We also
conclude that the prediction accuracy of this algorithm is
essentially determined by the accuracy of ML2.

Phase Prediction and Distance Dependence. It is
important to test for physical characteristics of charge-transfer
coupling, such as distance dependence and phase.”"””
Obtaining the correct (relative) phase is essential for the
simulation of charge or polaron dynamics of molecular solids.
In the previous work, KRR models for ethylene with CM.,
representation could reach 98.5%,”" and with ANN models for
naphthalene, it was over 90%.’> Those studies offer reliable
phase prediction in principle, and errors only occur in the
region of small couplings where signs of coupling are changing.
Here, we quantitatively examine the phase prediction of our
two-step scheme.

Prediction errors of naphthalene and ethylene dimers with
different ranges of |Vl are summarized in Table 2. In the case of

Table 2. Percentage of Errors in Phase Prediction for
Ethylene and Naphthalene Dimers

range in [V ethylene dimer naphthalene dimer
0-1° 1.98" 13.44
1-10 0.00 1.12
10-20 0.00 0.04

“The range of absolute coupling value employed in the statistics, in
meV. bPercentage of cases with an error in the phase.

ethylene dimers, the accuracy of the phase prediction is very
high. As [Vl is below 1 meV, cases of incorrect phase prediction
are <2%. Beyond that range, we do not encounter any phase
prediction problems. For naphthalene pairs, accuracy is lower.
As IVl is below 1 meV, the prediction error is as high as
13.44%. When |V is in the range between 1 and 10 meV, the
error sharply decreases to 1.12%. For both ethylene and
naphthalene pairs, one can conclude that incorrect phase
prediction occurs mainly in small coupling regions.

Finally, we tested the distance dependence of the electronic
coupling. Exponential decay with respect to the distance
between the two fragments is expected, which can be described
as

V = Vyexp(—pd) 9)

where d is the distance between individual fragments of a pair
and S is the decay rate. Practically, a MO is essentially a one-
electron wave function, which is expanded by atomic-centered
Gaussian basis sets; thus, the decay would have a Gaussian
component at a large separation.74
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To test the distance dependence, we arbitrarily picked three
pairs for ethylene and naphthalene dimers from a subset of 3—
4 A separation. The two molecules are moved along the vector
connecting their COM. We first compare the results for three
ethylene pairs (Figure 8) obtained from quantum chemical
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Figure 8. Distance dependence of electronic coupling for three
randomly selected ethylene dimers. Solid lines are for data from
quantum chemical calculations, and dashed lines with open circles and
filled triangles are for ML prediction with 20k and 40k training
samples, respectively. Structures of the three pairs tested are shown.
Arrows represent vectors connecting the COMs of the two molecules
along which the two molecules are separated.

calculations (QC) and ML2 models trained with 20,000 (20k)
and 40,000 (40k) samples. ML models for all pairs perfectly
capture the dependence of decay with increasing distance
above 1 meV. The deviation can be clearly observed when the
coupling is smaller than 0.1 meV. The discrepancy is not
improved even if the model is trained with a larger training
data set. No significant improvement is observed between a
20k model and one with 40k. We also note that the phase
cannot be correctly predicted by the model. We take pair 3, for
example. Starting from a distance of >7 A, the oscillatory
behavior can be clearly seen. In fact, the signs (phase) are not
consistent in this region either, as the 20k model reports an
opposite sign at 7.48 A (details are given in Supporting
Information Table S8).

The distance dependence of naphthalene dimers is shown in
Figure 9. Naphthalene models are less accurate, with good
agreement seen in couplings above 107 eV. In the case of pair
1, the 20,000 model offers an accurate prediction until 9 A. On
the other hand, the 40k model starts to significantly
underestimate the strength of couplings from d = 6.73 A and
gives the wrong phase from d = 7.53 A. For pair 2, the 20k
model underestimates the couplings until d = 6.97 A where a
sudden drop and a change of phase occur, and the two-step
ML scheme starts to yield the wrong phase in coupling. In this
case, a model trained with a larger database improves the
prediction. The prediction starts to deviate from the QC
results below 1 meV. Last, for pair 3, the 20k model also gives
reasonable couplings until d = 6.77 A. The 40k model does not
accurately predict couplings, either. The prediction for
coupling in naphthalene is much more complex than that for
ethylene. There exist two additional nodal planes in the
HOMO, leading to higher oscillatog behavior, and the learned
ML model is more complicated.”” A larger set of training
samples is required to capture its behavior. Nonetheless, the
40k model provides reasonable results in the range of 4—6 A in
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Figure 9. Distance dependence of electronic coupling for the three
randomly selected naphthalene dimers. Solid lines are for data from
quantum chemical calculations, and dashed lines with open circles and
filled triangles are for ML prediction with 20k and 40k training
samples, respectively. Structures of the three pairs tested are shown.
Arrows representing vectors connecting the COM of the two
molecules, along which the two molecules are separated.

COM separation, typical intermolecular separation in a
condensed phase, so our model should be suficient for such
situations.

Gaussian KRR is a widely used regression tool for
interpolating between data points scattered in a high-
dimensional space of input features. In principle, the more
training data one uses, the more accurate the model one
obtains. The trade-off is the computation time of quantum
chemical calculations in acquiring the ground truth for training
and the training time and memory usage to obtain and use the
models. In our present and previous works, molecular pairs for
training a model are randomly selected from thermal sampling
in MD simulations. We may repeatedly pick data that are near
the equilibrium of the molecules. Hence, it will be useful to
devise a selection strategy for meaningfully extracting data
points based on the feature “difference” in future development.

Computational Efficiency. To estimate the benefits of the
ML technique, we compare the computational time of QC
calculations and that of the ML prediction. Using a server
equipped with Intel Xeon CPU ES-2620 v4 8 cores at 2.10
GHz, NVIDIA Tesla P100, and Memory 256 GB, we built a
charge-transfer Hamiltonian for 576 ethylene molecules,
containing 165,600 pairs. The QC calculation took roughly
8932 min (0.863 min/pair X 165,600 pairs/16 threads), while
the ML model took only 1.41 min with GPU.

B CONCLUSIONS

In this work, we developed a new algorithm to predict
electronic couplings of ethylene and naphthalene dimers. The
algorithm contained two consecutive KRR models. The first
ML model is used to predict the HOMO of a molecule with a
structure variation. With the HOMO, we introduced the
overlap of the two MOs in the input vectors for the second ML
model. This strategy allows us to increase the ML prediction
accuracy of the coupling, as MAEs for ethylene and
naphthalene are reduced by 10-fold and 3-fold, respectively,
reaching MAEs of ~0.26 meV for ethylene and ~1.99 meV for
naphthalene.

Instead of increasing the number of training samples, in the
present work, we increase the quality of the prediction with a
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strategy that first predicts individual MOs and their overlap.
We show that such a step successfully increases the precision of
electronic coupling prediction. The high sensitivity of
electronic coupling with respect to intermolecular structures
is embedded, at least partially, in the MOs and their overlap
factor s. The prediction accuracy of hole-transfer coupling,
essentially determined by the overlap of the HOMOs of
fragments, is thereby increased. This work improves the ML
prediction accuracy for electronic couplings.
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